TerraCottem for erosion control of sandy soils all over the world


Photo credit: WVC

Erosion control of sandy soil by appying TerraCottem soil conditioner in the Antwerp harbour area

by Prof. Dr. Willem Van Cotthem (Ghent University, Belgium)


With the purpose of creating a new dock in the vicinity of Antwerp (Belgium), a large area was covered with sandy bottom sediments of the river Schelde, excavated by dredging. As these newly formed sandy soils are mostly nutrient deficient, it is extremely difficult to cover them with a vegetation layer to control wind erosion.  Their fertility and water retention capacity is generally too low, so that seeding with traditional grass species is mostly inefficient.  Even if these grasses germinate after some good rains, the young plants perish because the sand is unable to retain sufficient moisture and nutrients.

As a result of this drought and nutrient poverty, the young grasses will soon dry, which automatically leads to erosion, particularly in between the seeding lines of the grasses (see picture above).

In order to sustain an efficient vegetation layer on newly formed sandy soils, one has to condition those soils to improve their water retention capacity and fertility.  Thats’s where the soil conditioning technology TerraCottem (www.terracotten.com) plays an important role.

The TerraCottem soil conditioners are a proprietary mixture of more than twenty components each from different groups all assisting in the plant growth processes in a synergetic way (see: http://www.terracottem.com/terracottem-soil-conditioning-technology):

  • The growth precursors play a very important role in the initial growth phase of the plant. They activate root cell elongation and differentiation, and promote leaf development and biomass production.  In addition, roots are encouraged to grow more rapidly to depths where more water is present.
  • The cross-linked hydroabsorbent polymers absorb and store water that is normally lost to evaporation and leaching, reducing the volume and frequency of necessary irrigation by up to 50%.  This water is then kept at the disposal of the plant that accesses the stored water on demand through its root hairs, keeping the water in the root zone for a longer period of time.
  • The specially selected fertilizers provide balanced nutrition to the plants based upon macro and microelements.
  • TerraCottem’s carrier materials are selected for their chemo-physical properties (CEC, WRC, etc.) and their characteristics which allow homogeneous distribution of all components.

In view of an optimal development of a grass layer (turf), TerraCottem Turf has been developed. “Based on the TerraCottem principle, it contains zeolite, a 100 percent natural volcanic mineral that helps increase soil fertility and water retention.  The product’s benefits are further boosted by the inclusion of turf specific fertilizers and humic acids which have a positive effect on water retention capacity, soil structure and microbiological activity.   All this, to get quicker grass establishment, enhanced root and plant growth and improve the quality of turf, seeded grass and sprigs.”

At the start of our experiment in the Antwerp harbour area, the yellow sandy surface was completely barren and wind erosion was dramatic.  The experimental perimeter was divided into two parts:

(1) Left side of the photo above: The untreated part where a mixture of traditional grasses was directly sown in the sandy soil.

(2) Right on the photo: The TerraCottem-treated part (100 g per square meter, to a depth of 30 cm).

Thanks to some good rains, the grasses of the untreated part germinated and developed into a vegetation layer in which the seeding lines remained visible weeks after the start of the experiment.  During windy periods, sand grains were blown out from these uncovered parts between the grass lines.  Wind erosion and drought effect continued and finally the grasses died (see brown grasses in the picture).

Due to the improved water retention capacity and the higher fertility at the TerraCottem-treated part, the grasses developed soon into a closed turf layer, where wind erosion was totally reduced (see green “pasture” at the right hand side of the picture).

This experiment showed clearly that the soil conditioner TerraCottem is an excellent tool in the combat of erosion.  It deserves to be applied at the largest scale in the combat of desertification and all the applications to mitigate drought.




Author: Willem Van Cotthem

Honorary Professor of Botany, University of Ghent (Belgium). Scientific Consultant for Desertification and Sustainable Development.

%d bloggers like this: